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Abstract 
 

In this study, we implement small-area estimation to assess the prevalence of child health 
outcomes at the county, state, and regional levels, using national survey data. 
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Small-Area Estimation (SAE): Importance and Utility 
 
Prevalence estimates are critical sources of information that inform policy and program 
development, indicating for whom and where efforts are most needed. Small-area estimation 
(SAE), in particular, is a previously used and well-established method to generate prevalence 
estimates (Battese et al., 1988; Ghosh & Rao, 1994), as well as associated confidence intervals. 
Multilevel model-based SAE is useful when accuracy of more-underrepresented or smaller 
communities is important. Specifically, large population-based surveys, such as those gathered 
by the Census Bureau (e.g., National Survey of Children’s Health (NSCH)), are well powered to 
provide direct estimates nationally or at the state-level but cannot provide estimates for 
smaller areas due to small sample sizes at the local level (e.g., Census tracts, county; Myers et 
al., 2015; Panczak et al., 2016; Zhang, 2013; Zhang et al., 2015). SAE then harnesses data from 
the larger areas to strengthen estimates for the smaller areas. These smaller area estimates are 
of critical interest because they allow interventions to target more specific, local communities 
and help inform resource allocation decisions. 
 
For clarity, SAE refers to the process of using data from areas with larger sample sizes to inform 
predictions for areas with smaller sample sizes, while multilevel refers to the utilization of 
several types of information. For instance, outcome data can be a child-level prevalence 
estimate for a county, state, or region (e.g., autism spectrum disorder, overweight/obesity, and 
attention-deficit/hyperactivity disorder; Bradshaw et al., under review; Zgodic et al., 2021, 
under review), while predictors can be child-level (e.g., race, ethnicity, gender, age, parental 
educational attainment) and/or area-level (e.g., regional division characteristics, 
federal/state/county school funding, county child insurance rates). Finally, model-based refers 
to statistical models used to generate the estimates2. Not only is SAE useful because of its 
ability to provide estimates for less-data rich areas, it also has a wide variety of health 
applications, such as obesity, chronic disease, vaccination status, HIV, chronic obstructive 
pulmonary disease, and health-related quality of life (Benjamin Neelon et al., 2017; Cataife, 
2014; Eberth et al., 2013; Fang et al., 2018; Khan et al., 2020; Klompas et al., 2017; Koh et al., 
2018; Li et al., 2016; Lin et al., 2017; Mills et al., 2020; Tabano et al., 2017; X. Zhang et al., 2014; 
Z. Zhang et al., 2011). This enables SAE to be a valuable approach to utilize with the NSCH 
dataset and similar datasets. Thus far, the research team at the University of South Carolina 
(UofSC) has utilized SAE to estimate Tourette Syndrome (TS; see section “Tourette Syndrome 
(TS)”), autism spectrum disorder (Bradshaw et al., under review), overweight/obesity (see 
section “Overweight and Obesity”; Zgodic et al., 2021), and attention-deficit/hyperactivity 
disorder (Zgodic et al., under review) prevalence estimates from the NSCH. 

 

 
2 For instance, Zgodic et al. (2021) utilized a multilevel mixed effects logistic regression model (for child j in county 
k) with a county-level intrinsic conditional autoregressive random intercept term to predict county-level child 
overweight/obesity prevalence and used the following model (Xjk represented a child-level vector, Ck represented 
an area-level vector, and bk  represented spatial dependence between neighboring counties): 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝𝑗𝑗𝑗𝑗� =
𝐗𝐗𝑗𝑗𝑗𝑗𝜷𝜷𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 + 𝑪𝑪𝑗𝑗𝜷𝜷𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 + 𝑏𝑏𝑗𝑗. 
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Approach and Methods: How to Utilize Restricted-Use and Publicly Available Data 
 
To use SAE on a combined dataset of restricted-use and publicly available data, the research 
team at the University of South Carolina utilized the following process: 

1. Applied to use restricted data 
2. Gathered non-restricted data 
3. Combined the data into a single dataset in the Research Data Center’s (RDC’s) secure 

environment 
4. Accessed all data and conducted statistical analysis in the RDC’s secure environment 
5. Applied a variable selection procedure to the model in the RDC’s secure 

environment 
6. Worked with RDC staff to get estimates released from the secure environment 

(ensuring that respondent confidentiality was not compromised) 
7. Generated small area estimates and confidence intervals (outside of RDC). 

 
Restricted-Use Data 
The research team at the University of South Carolina utilized the NSCH dataset, which is a 
national survey examining the emotional and physical health of children in the United States 
(U.S.), ages 0-17 years. The NSCH was sponsored by the Health Resources and Service 
Administration and conducted by the U.S. Census Bureau. An equal number of randomly 
selected homes per state (including the District of Columbia) were contacted, such that 
parents/guardians provided health information about one child in that home, who was also 
randomly selected; for the 2016-2020 datasets, data were collected by online survey or by mail. 
The NSCH gathered information regarding child physical and emotional health, family 
interactions, parental health, school experiences, and neighborhood safety. 
 
To use restricted variables from the NSCH (e.g., county of residence), the research team 
underwent an extensive application process and met a set of specific requirements. Briefly, 
they completed an application with their Federal Statistical Research Data Center (FSRDC) 
Director and Census Administrator to use the restricted data, prepared specific documentation 
regarding details of their analyses and proposed project (e.g., background, methodology, 
timeline), and applied for Special Sworn Status (SSS) to access the restricted data. They also 
paid all necessary fees and coordinated visits to their RDC, as well as completed regular reports 
(e.g., annual, upon completion) and required trainings. Further, they submitted amendments 
when changes to the project were warranted. 
 
Non-Restricted, Public-Use Data 
To provide additional context and to strengthen their model building, the team at the UofSC 
also relied on public-use, secondary datasets. As this data was area-level (e.g., county, state, 
Census regional division), it was not restricted. The team utilized data regarding rurality, 
insurance coverage, school funding, state policies, and sociodemographic information, as well 
as community health, wellness, accessibility, and safety. This external data was extracted from 
governmental agencies and organizations, such as the Department of Health and Human 
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Services, Department of Agriculture, Environmental Protection Agency, U.S. Census Bureau, and 
American Community Survey. 
 
Like with the restricted-use data, the research team also went through a process to use the 
public-use data. For each additional dataset they wanted to include in their analyses, they had 
to complete a User Provided Memo, where they provided information regarding the file type 
and user permissions. They also sent the requested public-use data to the RDC. 
 
Combining Non-Restricted, Public-Use Data with Restricted Data 
The research team requested to use public-use area-level, in addition to the restricted-use 
individual-level data from the NSCH dataset. Originally, these additional area-level variables 
were not linked to the individual-level data in the NSCH dataset, so the first step in the RDC’s 
secure environment was to merge the area-level variables (see section “On-Site Analysis at the 
RDC”) to the NSCH data using Federal Information Processing Standard (FIPS) codes, which are 
unique geographic identifiers. Both the NSCH and the public-use data have FIPS codes and 
allow each child (i.e., row) in the NSCH data to be merged with the county, state, and Census 
regional division data of the public-use data. Upon merging, the dataset was considered 
complete and ready for analysis. It is important to note that this completed, combined dataset 
now contained many variables. Later, the research team used a variable selection procedure to 
identify the most predictive set of variables (see section “Small Area Estimate Modeling on a 
Combined Dataset”). 
 

Analyses: On-Site at the RDC 
 
To conduct the intended analyses, the research team’s Principal Investigator (PI) traveled to the 
Triangle Federal Statistical Research Data Center (TRDC) in Durham, NC to conduct the analyses 
in the TRDC's secure computer lab (other RDCs can be found at 
https://www.census.gov/about/adrm/fsrdc/locations.html). The U.S. Census Bureau had 
previously vetted the requested restricted-use NSCH, such that the data was already in the 
RDC’s secure environment upon arrival. Analyses occurred in SAS, a software, in a secure 
environment. The PI sent draft SAS code ahead of time as well, such that it could be edited 
accordingly (e.g., correct variable names) in the secure RDC environment.  
 
At the TRDC, the workstations use a Red Hat Linux operating system, which is considerably 
different than the Windows operating system or macOS. Particularly, the SAS interface for Linux 
is not as user friendly as the interface on Windows. Researchers cannot connect to the internet 
on the workstations, mobile, or laptop. To connect to the internet, researchers must leave the 
RDC. 
 
Small Area Estimate Modeling on a Combined Dataset 
As noted in the introduction, SAE is a statistical method, such that areas with small sample sizes 
borrow information from areas with larger sample sizes, allowing for more representative 
prevalence estimates. The SAE models applied herein were all logistic mixed effects models: 
 

https://www.census.gov/about/adrm/fsrdc/locations.html
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𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑗𝑗𝑗𝑗) =  𝑿𝑿𝑗𝑗𝑗𝑗𝜷𝜷𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 +  𝑪𝑪𝑗𝑗𝜷𝜷𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂  +  𝑏𝑏𝑗𝑗 
 
where 𝑝𝑝𝑗𝑗𝑗𝑗 represents the probability of the outcome for child 𝑗𝑗 in area 𝑘𝑘; 𝑿𝑿𝑗𝑗𝑗𝑗 represents the 
child-level fixed effects covariates (e.g., race/ethnicity, age, sex, parents’ highest educational 
attainment); 𝑪𝑪𝑗𝑗 represents the area-level fixed effects covariates; and 𝑏𝑏𝑗𝑗 represents the 
random intercept for area 𝑘𝑘 (e.g., county). 
 
SAE can include spatial information as well, but it is not a requirement. To include spatial 
information, 𝑏𝑏𝑗𝑗 was modeled using an intrinsic conditional autoregressive (ICAR; Banerjee et 
al., 2004; Cressie, 1993) model. As discussed in section “Results Release Process: Disclosure 
Review Meeting”, this choice was particularly helpful in the disclosure process for the research 
team’s models, as it made each county-level random effect prediction a function of the 
surrounding county-level random effect predictions. When 𝑏𝑏𝑗𝑗 does not include spatial 
information, 𝑏𝑏𝑗𝑗 is a traditional random intercept for a given area level, for example, the state 
level. This type of mixed effects model can be fitted using SAS PROC GLIMMIX. Sample code 
used in the “Tourette Syndrome (TS)”)  analysis can be found at: 
https://github.com/anjazgodic/ts_sae_poststratification. 
 
The combined dataset included many predictor variables which could be used in the model. The 
next step, still in the RDC’s secure environment, was variable selection. The research team 
opted to use 5-fold cross-validation based on the root mean squared predictive error (CV 
RMSPE), which minimizes the root mean squared predictive error (MSPE) of the model, because 
it favors variables that improve the predictive ability of the model. Specifically, the dataset was 
randomly split into five approximately equal groups (i.e., “folds”). Iteratively, each fold was 
used as a validation dataset, while the remaining four folds trained the model (Allen, 1974; 
Stone, 1974, 1977). The model fitted to the training set (i.e., the four folds) then was used to 
predict the prevalence for the desired outcome in the validation set (i.e., the remaining fifth 
fold) in which the RMSPE was estimated. This process was repeated five times, such that each 
fold acted as the validation set once, and the model producing the smallest RMSPE was 
selected as the final model. In doing so, only the most predictive, impactful covariates that 
minimized the RMSPE were maintained in the final model. 
 
The researchers fitted the above logistic mixed effects model to the full dataset with the 
predictors identified in the variable selection process. Because SAE is a type of regression, the 
output from SAE analyses includes estimates of child- and area-level fixed effects (i.e., 𝜷𝜷𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 
and 𝜷𝜷𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂), predictions of the random effects (i.e., 𝑏𝑏𝑗𝑗’s), the covariance matrix for the fixed 
effects, and the estimated variance of the predicted random effects. For example, if variable 
selection selected child-level and area-level predictors and if the model included a random 
area-level intercept, the model would produce child- and area-level fixed effects and a 
predicted random intercept for each area, along with their estimated standard errors. The SAE 
analyses generated effects that represent estimates that apply to all small and large areas (i.e., 
from fixed effects), as well as estimates specific to each area (i.e., from random effects). For 
example, one fixed effect could estimate the association of sex on obesity, which is constant 
across all areas. The random effects account for some of the variance in the outcome that is 

https://github.com/anjazgodic/ts_sae_poststratification
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unaccounted for by the fixed effects. The predicted random effects help make predicted area-
level values (e.g., predicted proportion of obese children) closer to the observed area-level 
values (e.g., observed proportion of obese children). This happens such that the difference in 
predicted versus observed values is smaller for areas with larger sample sizes than for areas 
with smaller sample sizes (i.e., shrinkage estimation, see Breslow & Clayton, 1993). 
 

Generating Results: Outside of the RDC 
 
Results Release Process: Disclosure Review Meeting 
After completing the analyses and generating fixed effects, random effects (for specific small 
areas, like counties), and their corresponding variances, the researchers submitted the 
appropriate documentation (see below) to their FSRDC Administrator for the release of the 
model coefficients from the RDC’s secure environment. The FSRDC Administrator worked with 
disclosure avoidance staff in the Census Bureau’s Center for Enterprise Dissemination, as well 
as Census’s Disclosure Review Board (DRB), to examine the results, ensuring that the estimates 
abided by Census disclosure standards. The required documentation consists of all requested 
estimates, tables of sample sizes from which each estimate was derived (to ensure that sample 
sizes are appropriate), and an FSRDC Clearance Request Memo.3  
 
Here, a Disclosure Review Board Meeting was required. At this meeting, members of the 
research team met with the FSRDC Administrator, disclosure avoidance staff, and the DRB to 
discuss the analyses and the risks of a potential disclosure violation. Because fixed effects are 
outcomes that use all predictors in the model, fixed effects are not often subject to very 
stringent reviews. However, some interaction terms may need to be removed due to them 
being based on small samples. The random effects are specific to small areas and undergo more 
scrutiny. County-level random effect estimates are (traditionally) only a function of people that 
were sampled from that county and would not pass the disclosure review. For the spatial ICAR 
model used in these analyses, the county-level random effect predictions are a function of 
children in that county, the children in the surrounding counties, the children in those counties 
that surround the surrounding counties, and so on. As a result, for the contiguous U.S., each 
county-level random effect prediction is a function of all children in the contiguous U.S. and 
pass disclosure review. Further, the county-level random effect predictions from Alaska pass 
disclosure review since the state is contiguous, and the predicted random effects are a function 
of all children from Alaska. For Hawaii, however, none of the counties share a common 
boarder; consequently, county-level random effect predictions cannot pass disclosure and were 
not requested for release. After the disclosure review meeting, the results (e.g., fixed effects, 
select random effects, and select random intercepts) were released to the researchers. 
 
Poststratification: Making Representative Estimates from Population Counts 
The fitted regression model from the SAE analysis results in prevalence estimates for all strata 
relevant to the variables (which were identified via variable selection (see section “Small Area 
Estimate Modeling on a Combined Dataset”)) in the model for each small area. For instance, in 

 
3 Examples of the FSRCD Clearance Request Memo are available from the corresponding author upon request. 
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a model that uses race/ethnicity (four categories), biological sex (two categories), age (eight 
categories), and parental education (four categories), there are 256 different (256 = 4*2*8*4) 
possible combinations (strata) of demographic variables. Another model may use sex (two 
categories) and diagnostic status (four categories) as predictors, yielding eight strata of 
participant characteristics. 
 
Poststratification 
To make a single estimate for each small area, rather than as many estimates as strata per small 
area, the research team then used a technique called poststratification. Poststratification 
creates weighted averages that reflect a population’s underlying distribution of characteristics. 
The research team multiplied the estimates for each stratum by the number of children per 
stratum in each small area (i.e., population counts) and divided the results by the number of 
children in that small area, resulting in a single small area estimate that reflected each small 
area’s demographic make-up. Poststratification occurred outside of the RDC’s secure 
environment. 
 
Obtaining Population Counts 
To conduct poststratification, the research team needed to obtain population counts for each 
stratum (e.g., the number of children per stratum in each small area). This can be accomplished 
through several mechanisms. Population counts may be available through public data (e.g., 
https://www.census.gov/topics/population.html). Alternatively, if population counts for 
individual-level factors are unavailable, researchers may have to generate population counts 
from additional SAE models (Bradshaw et al., under review) or multi-step processes (see section 
“Overweight and Obesity”). For example, population counts for adult education may be publicly 
available, but population counts for adult parents may be unavailable, and additional steps to 
obtain such counts may be required. Ultimately, predictors in the model dictate how the 
population counts should be obtained. 
 
It should be noted that the use of an individual variable is limited by how well that variable can 
be predicted. A variable can be highly predictive at the individual level, but if it cannot be 
accurately predicted at a county-by-stratum level, it could hurt the predictive ability of the 
model. 
 
Obtaining Confidence Intervals and Bootstrapping 
After generating small area estimates that reflect each small area’s demographics, the next step 
is to obtain confidence intervals, which capture uncertainty. The researchers at the UofSC 
accomplished this through a Monte Carlo–based parametric bootstrapping approach (Tofighi & 
MacKinnon, 2016), repeated 10,000 times. At every iteration, new random and fixed effects 
were randomly generated based on their distributions, as estimated by the small area model. 
Using these randomly generated coefficients, prevalence predictions were obtained for all 
strata. Then, poststratification was applied to the new strata-level prevalence predictions (the 
necessary population counts do not change with each iteration), giving new small area 
estimates. For each small area, the 95% confidence interval (CI) was either given by the 2.5th 

https://www.census.gov/topics/population.html
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and 97.5th percentiles of the bootstrap sample or derived from the sample's standard deviation, 
and the point estimates were given either by the medians or the means, respectively. 
 
SAE Utility in Action: Examples of Predicted Estimates Using the National Survey of Children’s 

Health 
 
The following section provides more detailed examples of how the research team at the UofSC 
used SAE to estimate Tourette Syndrome (TS) and overweight/obesity prevalence rates at the 
county-, state-, and Census regional-levels from the public- and restricted-use 2016-2020 
National Survey of Children’s Health, respectively. These examples highlight specific ways in 
which poststratification can be achieved and the utility of SAE in multiple contexts. In both 
examples, the research team had already merged the NSCH data with publicly available data, 
used the same variable selection approach, and utilized bootstrapping to obtain confidence 
intervals. 
 
Tourette Syndrome (TS): SAE with Publicly Available Data 
 
TS Background 
Tourette Syndrome is a neurological disorder characterized by repetitive movements and/or 
unwanted vocal sounds, with 0.3% of U.S. children having a diagnosis based on NSCH data 
(Bitsko et al., 2022). Given the lower estimate of diagnosed TS, smaller area estimates can be 
particularly helpful in identifying specific areas in which diagnostic and treatment resources 
may be most beneficial. To address this need, the research team at the UofSC generated state-
level prevalence estimates of TS using child- and area-level predictors. This example illustrates 
how to approach poststratification using publicly available data. Although states are not small 
areas per se, state-level prevalence estimates of TS can still be considered small area estimates 
(SAE) due to the low prevalence of diagnosed TS. Nationally, three out of every 1000 children 
have TS (Bitsko et al., 2022) and the sample size for each year of the NSCH is approximately 
1000 children per state. As a result, producing estimates at the state-level is a challenging task. 
 
TS Model 
The research team at the UofSC applied SAE, predicting state-level prevalence estimates of TS 
from child- and area-level information. Specifically, the model included child-level information 
on age, biological sex, the interaction between age and sex, and year of participation in the 
NSCH survey, as well as area-level information, such as the number pediatricians per 100,000 
state residents, the proportion of state residents with "some college" education, and the 
interaction between these two area-level variables. This model also included a random 
intercept for each state.  
 
This model did not include any spatial effects because the variable selection process indicated 
that the CV RMSPE was minimized in the absence of spatial components. The model building 
process was iterative, wherein previous models with different predictors were examined (e.g., 
neurodevelopmental disorder status), but these models were ultimately discarded because 
they produced results with too much uncertainty (e.g., wide confidence intervals). 
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TS Poststratification 
As with the general SAE approach outlined previously, the regression results provided TS 
estimates for each child-level stratum (i.e., survey participation year, sex, and age). To make a 
single TS estimate, the researchers needed to perform poststratification. In this scenario, there 
were 120 strata (120 = 5 survey years * 2 sexes * 12 ages), so population counts for each 
stratum needed to be obtained. At the state-level, population counts for male and female 
children, as well for ages and survey year (number of children in each state in 2016, 2017, 2018, 
2019, and 2020) were accessible through the Census, so the researchers used that publicly 
available data. 
 
Then, using these state-level population counts, as well as the TS estimated prevalence per 
stratum, the researchers were able to calculate a weighted average per state, which 
represented the state-level TS prevalence. To estimate variability, researchers used a Monte 
Carlo–based parametric bootstrapping approach (Tofighi & MacKinnon, 2016) with 10,000 
iterations, such that the 95% confidence intervals were formed by using the standard 
deviations of the bootstrap samples, and the point estimates were given by the means. 
 
Benchmarking. To obtain a national TS estimate, the researchers took a final weighted average, 
considering the number of children in each state (excluding Hawaii and District of Columbia due 
to missingness in area-level variables for these two states). Through this process, the 
researchers at the UofSC obtained a national TS estimate of 0.37%. However, research 
collaborators at the CDC have consistently obtained a national estimate of 0.31% over the past 
five years using standard approaches to analyzing NSCH data. This is a meaningful difference 
given the relatively low prevalence of diagnosed TS. To account for this difference, the 
researchers at the UofSC used benchmarking, which is a specific type of poststratification. First, 
they created a benchmarking weight (i.e., the CDC national TS estimate divided by the UofSC 
national TS estimate; 0.0031/0.0037 ≈ 0.84), and then they multiplied each bootstrap 
generated state-level TS prevalence estimate by the benchmarking weight. In doing so, when 
the researchers at the UofSC generated an updated national TS prevalence estimate, their 
national estimate matched that of the CDC (i.e., 0.31%), instilling more confidence in their 
updated state-level estimates. 
 
TS Results: State-Level Estimated Prevalence Estimates 
Figure 1 shows the state-level results from the SAE analysis with benchmarking. Prevalence 
estimates ranged from 0.42% to 0.22%. The highest estimates were located in Pennsylvania 
(0.42%) and New Jersey (0.41%), as well as in Vermont, West Virginia, and Maryland (all 0.39%), 
while the lowest estimates were found in North Dakota (0.22%), Idaho (0.23%), Wyoming 
(0.24%), and Utah (0.24%). While there is only a 0.20% difference between the states with the 
highest and lowest estimates, states with higher TS estimates have prevalence estimates up to 
35% higher than the estimated national estimate. Likewise, states with lower TS estimates have 
prevalence estimates up to 29% lower than the national estimate, suggesting that small state-
level differences may still be meaningful from a targeted policy implementation perspective. 
However, it is worth acknowledging that the 95% confidence intervals (CIs) for states with the 
highest estimates and with the lowest estimates overlap. While this overlap suggests that there 
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is uncertainty in the degree to which state estimates are statistically different from one 
another, the estimates can still help guide implementation decisions. 
 
Overweight and Obesity: SAE With and Without Publicly Available Data and Simplifying 
Assumptions4 
 
Overweight/Obesity Background 
Overweight and obesity, particularly in children, are a major public health concern, as they have 
been associated with a host of physical and mental challenges, including decreased life 
 
Figure 1: State-Level Tourette Syndrome Estimates from 2016-2020 NSCH Dataset 

 
 
Figure 1. Choropleth map displaying range of TS prevalence estimates in the U.S. Darker blue represents higher 
estimates, while lighter blue represents lower estimates. State-level estimates were not available for Hawaii or 
the District of Columbia. 

 
expectancy (Ebbeling et al., 2002; Halfon et al., 2013; US Preventive Services Task Force et al., 
2017). Almost 20% of children are obese (Bryan et al., 2021), but this estimate is not constant 
across geographical locations or demographic characteristics (Y. Wang et al., 2008; Y. C. Wang 
et al., 2011),pointing to the need to have accurate, up-to-date precise county-level estimates. 
This precision can help ensure that policies and programs are targeting the areas in most need 
of supports. Consequently, the research team at the UofSC predicted both county-level and 

 
4 This SAE analysis was first published in the American Journal of Epidemiology. See Zgodic et al., 2021 for complete 
details. 

TS Prevalence, % 



 12 

regional-level prevalence estimates of overweight/obesity using child-level and area-level 
predictors (Zgodic et al., 2021). This example illustrates how to approach poststratification 
when publicly available data does not provide all necessary population counts. 
 
Overweight/Obesity Model 
The research team at the UofSC applied SAE via a multilevel mixed effects logistic regression 
model with a county-level intrinsic conditional autoregressive random intercept term (ICAR; 
Banerjee et al., 2004; Cressie, 1993), predicting county-level prevalence estimates of 
overweight/obesity from child- and area-level information. Specifically, the model included 
information on child race/ethnicity, age, sex, and highest parental educational attainment, as 
well as area-level information, such as regional Census division, county percentage of children 
in single parent household, the number primary care providers per 100,000 county residents, 
county adult obesity rate, presence of a state school wellness policy, county-level population 
weighted walkability index, and county rurality status. This model included child-level and area-
level fixed effects, as well as an ICAR random intercept term, accounting for spatial dependence 
between neighboring counties. 
 
Overweight/Obesity Poststratification 
The regression model provided overweight/obesity estimates for all possible combinations of 
child-level predictors. In this example, there were 256 strata per county (256 = 4 
races/ethnicities* 2 sexes * 8 ages * 4 highest parental educational attainments). As in the 
approach employed for the TS model, the researchers needed to obtain population counts to 
estimate a single, representative prevalence rate per county. At the county-level, population 
counts for race/ethnicity, sex, and age were accessible through the Census, so the researchers 
used that publicly available data. 
 
However, the population counts for children's highest parental educational attainment were 
not publicly available. As a result, several simplifying assumptions using publicly available 
Census data across a multi-step process were made in order to calculate these population 
counts (Zgodic et al., 2021). First, it was assumed that a parent’s education was independent of 
their child’s age and gender, but not independent of their child’s race. As such, the researchers 
sought to determine the probability of parental educational attainment given race. First, using 
Census population counts, the researchers calculated the county-to-state ratio of adults with a 
given educational level conditional on a particular race. Since the Census only provided the 
prevalence of adult (not parental) education given race, the UofSC researchers assumed that 
this ratio was the same for parents sampled in the NSCH data. Next, the researchers used the 
NSCH data to fit a mixed effects multinomial regression model that estimated the state-level 
prevalence of parental education given child race/ethnicity and Census regional division. Finally, 
using this model's predicted education level prevalence and the ratio of county-to-state 
adults/parents with a given educational level, the researchers calculated the county-level 
prevalence of parents with a certain educational attainment given their child’s race. 
 
Using Census county-level population counts, the estimated education stratum counts, and the 
overweight/obesity probabilities per stratum, the researchers were then able to calculate a 
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weighted average per county. Finally, to estimate variability, researchers used a Monte Carlo–
based parametric bootstrapping approach (Tofighi & MacKinnon, 2016) with 10,000 iterations, 
such that the 95% confidence intervals were given by the 2.5th and 97.5th percentiles of the 
bootstrap samples, and the point estimates were given by the medians. 
 
Overweight/Obesity Results: Where SAE Works Well 
Nationally, overweight/obesity estimates were estimated to be 30.7%; regionally, the East 
South Central regional census division had the highest estimate (36.3%) of overweight/obesity, 
whereas New England had the lowest estimate (27.8%). County-level differences emerged as 
well. Specifically, 57.5% of counties in the Southeast (i.e., West South Central, South Atlantic, 
and East South-Central divisions) had overweight/obesity estimates greater than 33%, while 
only 21.8% of counties in the Midwest and on the West coast (i.e., West North Central, 
Mountain, and Pacific divisions) had overweight/obesity estimates greater than 33%. See 
Zgodic et al., 2021 for complete results. 
 
In terms of certainty, the width of the confidence intervals revealed meaningful patterns. 
Generally, narrow confidence intervals suggest more certain estimates, whereas wide 
confidence intervals indicate less certainty. Interestingly, there was considerable uncertainty 
(95% CI width = 66.9%) in the estimate for Los Angeles County, CA (42.7%, 95% CI: 11.9%, 
78.8%) but much more certainty (95% CI width = 26.6%) in the estimate for Dallas County, TX 
(44.4%, 95% CI: 31.3%, 57.9%) despite both being large metropolitan counties and with similar 
overweight/obesity estimates (~43-44%). The discrepancy in uncertainty is likely due to fixed 
effects via the different demographics of the areas. Specifically, Los Angeles has higher 
estimates of particular underrepresented race/ethnic groups by parental education attainment. 
These combinations were rare in other counties throughout the U.S. Consequently, the fixed 
effect model coefficients for those strata are estimated with more error. Conversely, Dallas has 
sociodemographic characteristics that are more similar to the rest of the U.S. As a result, the 
model coefficients for those strata are estimated with less error. Generally, these results 
suggest that SAE is not an equally reliable method for all communities; more specifically, these 
results indicate that SAE provides estimates with narrow confidence intervals for more 
homogeneous, rather than heterogeneous, counties.  

 
Summary 

 
Small area estimation (SAE) is a powerful tool with many strengths. Primarily, it estimates 
prevalence estimates in areas with small sample sizes by borrowing information from areas 
with larger sample sizes. Moreover, it is also a flexible technique. SAE can employ individual-
level, as well as area-level, predictors for data that is publicly available (e.g., Tourette 
Syndrome), for data that requires simplifying assumptions (e.g., overweight/obesity), and for 
data that relies on other SAE models  (e.g., autism spectrum disorder; Bradshaw et al., under 
review). SAE can also incorporate spatial information using intrinsic conditional autoregressive 
random intercept terms (ICAR; Banerjee et al., 2004; Cressie, 1993). 
 



 14 

However, despite its strengths, SAE is not without limitations. Namely, it is not a ubiquitously 
useful method. In areas with sociodemographic homogeneity, it provides more certain 
estimates, but in areas with sociodemographic heterogeneity, it generates less certain 
estimates. As SAE is a method that can identify which communities most need support, 
certainty is important to consider. Stakeholders would want to prioritize interventions in areas 
where one is more confident of a community’s needs. Moving forward, researchers should 
continue to utilize SAE because it is well suited to provide community-specific information 
regarding where interventions, policies, and resources are needed, but they should carefully 
monitor the certainty of their results. 
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